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Introduction

- Ground source heat exchange (GSHE) system
- Reinforced concrete pile

» Previous full scale field studies



No. of case | Author/ Year Location of the project

1 Laloui et al. (2006)in [1] Lausanne / Switzerland

2 Brandl (2006) in [2] Bad Schallerbach / Austria
3 Bourne-Webb et al. (2009)in [3] Lambet College / London
4 McCartney and Murphy (2012) in [4] | Denver / Colorado

5 Murphy et al. (2014) in [5] US Air Force Academy

6 Sutman et al. (2014)in [6] Richmond / Texas

Table 1. Previous studies on full scale field experiments on HEP




Objective

- Investigate the mechanical behaviors of an energy piles.

- Investigate the effects of soil layering and stiffness on the
behavior of energy piles.

- Evaluate the displacement, stresses and strains of the pile
during heating and cooling cycles.



Background

- Null point

- Sigh convention: upward displacement, upward shaft
friction, expansive strain and tensile stress are positive

. The free thermal strain: €r—rFree = AT

. Additional stress: or = E(er_0 — €r_prec)






nite element model

« 6,489 nodes and 2,080
elements
- Pile: CAX8R; Soil: CAX8RP

Contact between pile and soil:
rough Figure 7. The distribution of temperature

at the end of heating phase

Property Reainforced concraete pile
Young's modulus E (MPa) 20200

l Poisson's ralio, v DATT
Density, p (ka/m?) 2500

Coeellicient ol thermal expansion, o (=C-1) | 1x100

Healcapacity, C {Jim#=C} 2x10 EEm; PLE-G0L 1246
Hioe. J¥0s
Mro oo

Thermal conductivity, 7. (WiméC) 21 Een PLESOIL 269

e, 42

Table 2. Reinforced concrete pile properties

Property Soil A S0ilB | SeoilD
Z, Bulkmodulus, K (MPa) 11310 | 96333 | 1,860 Figure 8. The distribution of temperature
i Shearmodulss, G (MPa) 7787 | 1980 | 1675 at the end of cooling phase
H
5: Poisson’s ratio, v 0177 0489 0157
-
i Mass density, p (kg/m?) 2500 | 2000 |2550

Coefficient of thermal expansion, a (¢C) | 1x10-= 1x10+ | 1x10¢

Heat capacity, C (Jim3=C) 24x106 | 2.4x105 | 2.0x106

Thermal conductivity, 2 (W/m/=C) 18 18 11

Table 3. Soil properties
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Figure 4. FE model and boundary
conditions in a homogeneous soil
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Figure 5. FE model and boundary
conditions in a layered system



Property Reinforced concrete pile

Young's modulus, E (MPa) 29,200
Poisson’sratio, v 0177
Density, p (kg/m?3) 2,500

Coefficient of thermal expansion, a (°C-1) | 1x105

Heat capacity, C (J/m3C) 2x108

Thermal conductivity, 2. (W/m/eC) 2.1

Table 2. Reinforced concrete pile properties




Property Soil A SoilB | SoilD
Bulk modulus, K (MPa) 11310 | 98333 | 1,860
Shearmodulus, G (MPa) 7787 19.80 1675
Poisson’sratio, v 0177 049 0.157
Mass density, p (kg/m?3) 2. 500 2000 2,550
Coefficient of thermal expansion, a (°C-') | 1x105 1x10+ 1x10%
Heat capacity, C (J/m3<C) 24x108 | 24x108 | 2.0x108
Thermal conductivity, 2. (W/m/C) 18 1.8 1.1

Table 3. Soil properties
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Figure 6. The history of temperature imposed

on the pile



TEMP
(AvD: 75%)

Max: 21.00
Elem: PILE+SOIL.1079
Node: 4438

Min: -0.00
Elem: PILE+SOIL.2063
Node: 422

Figure 7. The distribution of temperature
at the end of heating phase



TEMP
(Avg: 79%)

Max 3.29
Elemn: PILE+SOIL.1346
Node: 4986

Min: -0.00
Elem: PILE+SOIL.2063
Node: 422

Figure 8. The distribution of temperature
at the end of cooling phase
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Figure 9. Vertical displacement of the pile head and toe
during thermal loading
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Figure 10. Vertical displacements of the pile with depth
at 21 and 3 degree Celsius
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Figure 9. Vertical displacement of the pile head and toe

during thermal loading
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Figure 11. Vertical strains in the pile with depth Figure 12, Vertical stress in the pile with depth
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Figure 11. Vertical strains in the pile with depth
at 21 and 3 degree Celsius
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Figure 12. Vertical stress in the pile with depth
at 21 and 3 degree Celsius
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Figure 13. Shear stress next to pile with depth
at the end of heating and cooling phases
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Figure 14. Vertical displacement of the pile head and toe
during thermal loading
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Figure 18. Shear stress next to pile with depth
at the end of heating and cooling phases
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Figure 16. Vertical strains in the pile with depth
at 21 and 3 degree Celsius
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Conclusions

- Environmentally friendly and sustainable alternative energy
source.

- Soil properties and soil layering at the site influence stresses,
strains and displacement of HEP.

- Max thermal axial strains occurred at the pile head at the end of
heating period.

- Heating induced additional compressive stresses in the pile while
increasing mobilized shear stresses in the surrounding soils.

- Heating induced negative skin friction in the upper portion of the
pile.

- Tensile stresses developed in the pile during cooling phase have
been well within accepted limits for the reinforced concrete.



- Environmentally friendly and sustainable alternative energy
source.

- Soil properties and soil layering at the site influence stresses,
strains and displacement of HEP.

- Max thermal axial strains occurred at the pile head at the end of
heating period.

- Heating induced additional compressive stresses in the pile while
increasing mobilized shear stresses in the surrounding soils.

- Heating induced negative skin friction in the upper portion of the
pile.

- Tensile stresses developed in the pile during cooling phase have
been well within accepted limits for the reinforced concrete.
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